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We consider finite systems with random control parameters. A theory for a 
unified description of internal fluctuations and external noise is presented. Inter- 
nal fluctuations are modeled by a one-step Markovian master equation. Exter- 
nal noise is introduced by random parameters in the master equation. It is 
modeled by a Poisson white noise. The unified description of fluctuations 
features a Markovian master equation with nonvanishing transition 
probabilities for all steps in the state space. Alternative formulations are given in 
terms of the generating function, Poisson representation and the equations for 
the factorial moments. An expansion around the thermodynamic limit is con- 
sidered. The theory permits the calculation of finite-size effects. It predicts the 
existence of a coupling of the two types of fluctuations leading to "crossed-fluc- 
tuation '~ contributions. Two examples are considered: ( i )a  Poisson counting 
process with fluctuating parameter, (ii) a creation and annihilation wocess with 
source terms and fluctuations in each of the creation, annihilation, and source 
parameters. In the second example a complete analysis is given for the 
stationary distribution and associated moments for a finite system and also in 
the thermodynamic limit. The different role of the fluctuations of the three 
parameters is discussed. Explicit "crossed-fluctuations" contributions are found. 
The effect of the system size on the type of transitions induced by external noise 
in the thermodynamic limit is discussed. 
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1, INTRODUCTION 

In the last decade several authors have studied nonequitibrium system 
whose control parameters vary randomly in time. This general physical 
situation is nowadays known as the external noise problem. It has been 
predicted that external noise can modify in nontrivial ways the behavior of 
the system. The effect is particularly important in the vicinity of non- 
equilibrium transitions. The theoretical description of such systems as well 
as several experimental studies have been reviewed in a recent monograph 
by Horsthemke and Lefever. (I) 

The standard theoretical description of the effects of external noise 
features a set of stochastic differential equations of first order in time for 
the relevant macroscopic variables of the system. Usually only one variable 
is considered. Such stochastic differential equations are obtained from a 
deterministic description of the system in which the precisely defined value 
of a control parameter is replaced by a stochastic process. This process 
models the external noise. The starting deterministic description emerges as 
a limit of a more refined description of the system. At this more detailed 
level the intrinsic fluctuations of the system are taken into account. The 
deterministic description is obtained in the thermodynamic limit in which 
the internal fluctuations disappear. Therefore, the underlying assumption of 
the standard external noise description is that internal fluctuations can be 
neglected in comparison with the ones originated by external noise. This is 
a very reasonable assumption for an ordinary macroscopic system. But for 
a finite system there will be a contribution from the internal fluctuations 
which can be important in thermodynamically small systems as 
microdevices. Moreover, it is conceivable that there exists some kind of 
coupling of internal and external fluctuations which cannot be studied in 
the thermodynamic limit. Lastly, from a first-principles point of view there 
exists the desire of having a description in which internal and external fluc- 
tuations are simultaneously and consistently considered. In this paper we 
present such a description. Within it, finite-size effects in a system driven by 
external noise can be calculated and coupling effects of internal and exter- 
nal fluctuations are found. 

We describe the internal fluctuations at a mesoscopic level by a dis- 
crete Markovian master equation. (2) For simplicity we only consider one- 
step processes. In the thermodynamic limit the master equation reduces to 
a deterministic description. (3-5~ The control parameters appear as constant 
coefficients in the transition probabilities of the master equation. External 
noise is introduced at this level by replacing such constant coefficients by 
random processes. This leads to stochastic transition probabilities. The 
average of the master equation with stochastic transition probabilities over 
the realizations of the random processes modeling the external noise results 
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in a new master equation. This final equation gives the desired unified 
description of fluctuations only in terms of the system variables. A first 
attempt in this direction was reported by San Miguel and Sancho (6) using 
Gaussian white noise as a model of external noise. In this way, sensible 
answers for the statistical properties of the system are found. Nevertheless, 
the procedure is not completely satisfactory because the stochastic trans- 
ition probabilities become negative for some realizations of the noise. To 
avoid this shortcoming a deeper analysis based on more safe grounds is 
needed. The joint description of fluctuations has also been considered using 
a dichotomic Markov process for the external noise. (7) This permits to 
maintain the positivity of the stochastic transition probabilities. The dif- 
ficulties in this case are that the dichotomic Markov process is not a 
realistic model of natural external noise and that the relevant physical 
variable does not follow a Markovian process. An application to nuclear 
reactor models with external Gaussian white noise and dichotomic Markov 
noise is given in Ref. 8. In this paper we present a complete analysis of the 
problem of a joint description of fluctuations modeling the external noise 
by a Poisson white noise. (9-16) In spite of the technical difficulties of dealing 
with such a noise, it permits to maintain the positivity of the stochastic 
transition probabilities and the physical variable follows a Markov process 
which incorporates internal and external fluctuations. 

In Section 2 we review the standard description in the thermodynamic 
limit for Poisson external white noise. In Section 3 we present the general 
formulation of the problem. We derive the master equation for the unified 
description of fluctuations. Starting from a one-step master equation, it is 
found that if the fluctuating coefficient belongs to the transition probability 
associated with a one step jump forward (backward) in state space, the 
averaged master equation includes nonvanishing transition probabilities for 
all possible jumps forward (backward) in state space. It is difficult to 
extract relevant statistical information in concrete cases from this master 
equation. To overcome this difficulty, we develop three other equivalent 
alternative mathematical formulations of the problem: the equation for the 
generating function, the Poisson representation of the master equation, and 
the equations for the factorial moments. In particular, from the equation 
for the moments we show the existence of "crossed-fluctuation" con- 
tributions which couple internal and external fluctuations? They vanish 

After this work was submitted for publication, Horsthemke and Lefever [Phys. Lett. 
106A:10 (1984)] proposed a model to give a joint description of internal and external lluc- 
tuations, based on the use of stochastic differential equations. We note that in such model 
"crossed-fluctuations" only occur at finite correlation times of the external fluctuations while 
here they are found for a white external noise. (For a discussion in this context of the 
passage from a master equation to stochastic differential equation see the second paper in 
Ref. 8.) 
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both in the thermodynamic limit and in the absence of external noise. 
Finally we present an expansion of our general equations around the ther- 
modynamic limit. This gives a systematic method for the calculation of 
finite size effects. In Section 4 we discuss several examples. We first discuss 
the Poisson counting process whose parameter undergoes fluctuations 
given by a Poisson white noise. Our second example is a creation and 
annihilation process with source. This process has been used to study the 
internal fluctuations in maser amplification, (17) a chemical model, (ls~ and a 
nuclear reactor model. (19) We consider external noise separately in the 
source parameter (additive noise) and in the annihilation and in the 
creation parameter (multiplicative noise). We first discuss these three cases 
in the thermodynamic limit. To our knowledge this study has not been 
previously reported in the literature for Poisson white noise. In three cases 
we find a sort of "noise-induced transition ''(1~ which does not exist for 
Gaussian white noise. In the multiplicative noise cases the conditions for 
the existence of stationary state and stationary moments can be understood 
in terms of realizations of the noise which destabilize the system. The 
behavior of the system is different for fluctuations of the annihilation 
parameter and fluctuations of the creation parameter. This difference dis- 
appears if external noise is modeled by a Gaussian white noise, because in 
this latter case the positivity of the parameters cannot be maintained. On 
the other hand, with Poisson white noise we find a similar behavior of the 
stationary distribution when fluctuations are considered either in the 
source parameter or in the creation parameter. For finite systems, and in 
the three cases, we calculate the stationary distributions which incorporate 
internal and external fluctuations, and also their associated moments. 
Exact analytical results are given for fluctuations in the source and 
annihilation parameters. Numerical results for the probability distribution 
are shown for the three cases. They are obtained by an iterative calculation 
outlined in Appendix C. The conditions for the existence of a stationary 
distribution and stationary moments are not changed by the consideration 
of a finite volume in any of the three cases. Also the mean value is not 
modified from its value in the thermodynamic limit. The relative fluctuation 
around the mean value is in the first case (additive noise)the sum of its 
value in the thermodynamic limit with the one in the absence of external 
noise. In the two other cases (multiplicative noise) we find an additional 
"crossed-fluctuation" contribution. The dependence that we find in the 
three cases of the mean value and relative fluctuations on the noise 
parameters and the volume of the system is discussed in the light of our 
general results of Section 3. The transitions found in the behavior of the 
stationary distributions, in the thermodynamic limit, are smeared out in a 
finite system. Important changes can still be seen in a finite but large 
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system. For small system sizes internal fluctuations dominate, no noticeable 
transition is seen, and the stationary distribution is quite independent of 
which parameter fluctuates. The similar form of the stationary distribution 
for fluctuations of the source parameter or fluctuations of the creation 
parameter is maintained for all values of the system size. Some properties 
of the white Poisson noise are summarized in Appendix A. Appendix B 
contains a proof of an important operator relation used in the main text. 
The consequences of our results in the Gaussian white noise limit of the 
external noise will be discussed in detail elsewhere. 

2. WHITE POISSON NOISE IN THE T H E R M O D Y N A M I C  LIMIT 

In this section we first summarize the master equation description of 
internal fluctuations. Secondly we discuss the framework used to discuss 
the effect of white Poisson external noise in the thermodynamic limit of the 
master equation. 

2.1. Master Equation 

Intrinsic fluctuations of a finite homogeneous system can be described 
in many systems (2'7) by a Markovian master equation of the general form 

c~P(N; t) 
c~t 

= ~ { W ( N , N - n ) P ( N - n , t ) + W ( N , N + n ) P ( N + n , t ) }  
n =~: 1 

- { W ( N +  n, N) + W ( N -  n, U)} P(N, 0 (2.1) 
n = l  

where W(N• n, N) is the transition probability of n steps, from state N to 
state N + n. Here we restric ourselves to one-step processes. Introducing the 
notation 

Q(N) =- W(N + 1, N) (2.2) 
R(N) = W(N-- 1, N) (2.3) 

and the operators 
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the master equation can be written for one-step processes as 

OP(N, t) 
- -  = [ ( E -  - 1) Q ( N )  + (E  + - 1) R ( N ) ]  P ( N ,  t) 

Ot 

~ F ( ~  N, N)P(N, t) (2.5) 

Two useful representations of the master equation which we will use 
later are given by the generating function F(s, t) (2'2~ and the Poisson 
transform f(a, t). (18) They are defined by 

F(s, t)= ~ sNP(N, t) (2.6) 
N = O  

a N 

P(N, t)= f dae-"-~..f(a, t) (2.7) 

The equation satisfied by F(s, t) is (21) 

~?F(s,t) - 1 )  ( -~s)]F(s,t) (2.8) 

In order to write down the equation for f(a, t) we assume without loss 
of generality that the transition probabilities Q(N) and R(N) can be writ- 
ten as a sum of factorial products f2,,(N) 

m0 

Q(N)= ~ (~mffJm(N) (2.9) 
r n = 0  

to 

R(N)= ~ h~,(N) (2.10) 
l = 1  

where 

Ore(N) =N(N- 1)... ( N - r n +  1) (2.11) 

In this case the equation for f(a, t) is 

to ~3 

+ t~i (2.12) 
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where 

= a t (2.14) 

Equations (2.5), (2.8), and (2.12) are equivalent standard starting 
points in the study of intrinsic fluctuations of a system. 

In the thermodynamic limit in which the volume of the system V ~ co, 
with N ~  oo and x =  N/V  finite, intrinsic fluctuations disappear and (2.5) 
reduces to a deterministic description defined by a macroscopic evolution 
equation for x. (3 5) The transition probabilities are assumed to be extensive 
quantities 

Q(N) = Vq(x), R(N) = Vr(x) (2.15) 

In terms of q(x) and r(x) the deterministic equation in the thermodynamic 
limit is 

2 = q(x) - r(x) (2.16) 

In (2.15) q(x) and r(x) may contain contributions proportional to V -n 
which are neglected in (2.16). 

2.2. External  Noise in the  T h e r m o d y n a m i c  L imi t  

The standard description of external noise effects ~ is made at the level 
of the deterministic equation (2.16) by replacing constant parameters in 
(2.16) by random functions of time. We assume here that q ( x ) =  
q~ + eql(x) contains a parameter c~ and r(x) = r~ + flrl(x) a parameter 
fl which become random functions of time according to 

~ = ~ +  ~Q(t), / ~= f i+  eR(t) (2.17) 

where c~ and fi are, respectively, the mean values of c~ and/~ and ~Q(t) and 
~R(t) are random processes of zero mean value, c~ and/3 are assumed here 
to be positive definite parameters and also intensive quantities. When c~ and 
/~ are given by (2.17), q(x) and r(x) become 

q(x) = qo(x) + ~o(t) q~(x) (2.18) 

r(x) = ro(x) + r rl(x) (2.19) 
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where 

qo(x) = q~ + ~ql(x) 

ro(x) = r~ + flr l(x) 

(2.20) 

(2.21) 

Substituting (2.18) and (2.19) in (2.16) we obtain a stochastic differen- 
tial equation (SDE) which is the standard starting point in the study of 
external noise. It is more convenient to deal with the equation for the 
probability density P(x, t) of the process than with the SDE for x(t). 

P(x, t) is given by 

P(x, t) = 3(x(t) - x) (2.22) 

where ( ' " )  indicates the average over the realizations of ~Q(t) and ~R(t). 
From (2.16), (2.18), (2.19), and (2.22) we obtain 

~ 6 ( x ( t )  - x )  _ 
0t ~x [q0(x) - ro(x)]  6(x(t)- x) 

8 
~x q~(x) ~Q(t) 6(x(t)- x) 

+ ~x r~(x) ~R(t) 6(x(t) - x) (2.23) 

The final closed equation for P(x, t) is obtained when the average over 
~Q(t) and CR(t) is explicitly performed. The result depends, of course, in the 
statistical properties of CQ(t) and ~R(t). In this paper we consider that both 
CQ(t) and ~R(t) are independent white generalized Poisson noise (white 
shot noise). 

White Poisson noise has been considered in recent years in Refs. 9-16. 
It is obtained as a white noise limit of a generalized Poisson process z(t) 
(see Appendix A). It represents a sequence of delta peaks at random points 
in time. These random points are given by a Poisson counting process with 
parameter 2. The average time difference between two peaks is controlled 
by 2 and the amplitude ~o of the peaks is distributed according to a 
probability density p(m). White Poisson noise z"(t) can be defined by its 
characteristic (moment-generating) functional with test function v(t~) (see 
Appendix A) 

o Ev __oxp l 
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where {-.. }av indicates the average taken with p(oJ). The process z~(t) has 
mean value 2O3, with O3 = {o)},v. The white Poisson noise ~(t) that we will 
consider has zero mean value, tt is defined by ~( t ) - -z~( t ) -  2c5. An impor- 
tant feature of ~(t) is that it is bounded from below ~(t) ~> -2o3. This per- 
mits that a parameter e fluctuates according to (2.17) keeping a definite 
sign. This property is lost in the Gaussian white noise limit defined by 
2-+ o% {co'}~ ~ 0 with 2O3~ 0% 2{co2}~ =2D and 2{co~}~ ~ 0  for n~>3. 
Other properties of the white Poisson noise are summarized in Appendix A. 
In this Appendix we also derive an important formula for the average of 
~(t) with a functional (Pill:  

~(t) (p[~] = 2 ~=2 n! 3"- '~( t)  (2.25) 

Making use of this formula it is easy to take the average of equations given 
for each realization of ~(t). Consider a general linear equation of the form 

8A(x, t) 
~t -- 0 ~A(x, t) + ~(t) 02A(x ,  t) (2.26) 

where O1 and 0 2 are operators acting on A which do not depend on r 
Equation (2.26) implies that A(x,  t) is a functional of ~(t) such that 

6~A(x, t) 
- -  -- O'~A(x, t) (2.27) 

Taking the average of (2.26) we immediately obtain from (2.25) and (2.27) 
that 

02(x, t)= o~%(x, t)+)~[ {e~~ o30~- 1] i(x, t) (2.28) 
0t 

where A(x, t) is the average of A(x,  t) over the realizations of ~(t). 
With the use of (2.28) for the two independent processes ~o and ~R(t) 

we obtain for the average of (2.23) 

8P(x, t) ~? 
- [ q o ( X ) -  r o ( x ) ]  P(x ,  t) 

~t 3x 

F 1 + ~e [ {e -~176 +O3Q ~ ql(x) - ~v 1 j P(x,  t) 

+ )~R I {e~ ~---s rl(X)-- ll  P(x, t ) 

- LoP(x,  t) (2.29) 

822/40/5-6-5 
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This equation describes, in the thermodynamic limit, the effect of external 
noise in the parameters e and ft. In the following we will consider two par- 
ticular choices of the distribution p(co). The first one is the case in which co 
takes a single value eS: p(co) = 3(a) - o3). The equation for P(x, t) is trivially 
obtained from (2.29) in this case. The second case is an exponential dis- 
tribution 

e - c o / o  
p(co) = -  _ (2.30) 

(.o 

where o) is restricted to take positive values, in this case (2.29) becomes 

OP(x, t) 
O ~  = - (?x [q~ - r~ - )~QChQql(x) + )~R~Rr~(x)] P(x, t) 

0 1 
- 2e(5~ -~x qi(x)  1 + che(O/Ox) ql(x) P(x, t) 

+ )~RcS~ ~x r~(x) 1 - (5R(c~/gx) rl(x ) P(x, t) (2.31) 

The stationary solution of (2.31) is easily found in the case in which there is 
a single fluctuating parameter. For q~ = 0 we have (~6) 

P,~(x) ~ [qo(x) - ro(X) + )~ReSe rl(x) ] - I  

{I x x exp qo(x') - ro(x') 
~5Rrl(x')[qo(X') - ro(x') + 2ReSRrl(x')] 

dx'} (2.32) 

The equations satisfied by the moments xmt are easily derived from (2.31): 

d ..-:w 1 ( d )  k 
x , = r e x  m- [qo(x) ro(x)] t+) .o  ~ aS~ q~(x)-dxx " - -  e ~  m t 

k ~ 2  

+ )t e cro~(-1) k rl(x)-~x x'~t (2.33) 
k = 2  

3. WHITE POISSON NOISE IN A FINITE SYSTEM 

In the previous section we have considered white Poisson external 
noise in the deterministic equation (2.16). This equation was obtained in 
the thermodynamic limit from the master equation (2.5). In this section we 
consider the same external noise but without going first to the ther- 
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modynamic limit. This is done by introducing random parameters at the 
level of the master equation (2.5). In this way we obtain a description of a 
finite system in the presence of external noise which takes into account 
intrinsic and external fluctuations simultaneously. It is obvious that this 
procedure is a purely phenomenological way of introducing external noise. 
The problem of deriving a master equation with stochastic transitions form 
first principles stands as a clear challenge. The introduction of random 
parameters can be made directly in (2.5) or equivalently in the equation 
(2.8) for the generating function or in equation (2.12) for the Poisson trans- 
form. A last possibility is to introduce random parameters in the equations 
for the moments obtained from (2.5) of (2.8)-(2.12). Each of these 
possibilities is more convenient for the calculation of different quantities in 
particular cases. For completeness we present below the general equivalent 
equations for the four approaches to the problem that we have mentioned. 

In the same way than in Section 2 we assume that a parameter c~ in 
Q(N) = Q~ + ~QI(N) and a parameter /~ in R(N) = R~ + flRl(N) 
become random functions of time as given in (2.17). This leads to 
stophastic transition probabilities 

Q(N) = Qo(N) + ~o(t) Q~(N) (3.1) 

R(N) = Ro(N) + ~R(t) R,(N) (3.2) 

where 

Qo( N) = Q~ N) + ~Q I( N) (3.3) 

RoiN ) = R~ + flRI(N ) (3.4) 

In the thermodynamic limit (3.1) and (3.2) reduce to (2.18) and (2.19), 
respectively. In the absence of external noise, the positivity of Q(N) and 
R(N) is in general guaranteed by the positivity of c~ and/?. When these 
parameters become random functions of time, the positivity of Q(N) and 
R(N) require that c~ and/~ remain positive for all times. For white Poisson 
noise this is guaranteed whenever 

c~ ~> 2QeSQ (3.5) 

fl~> 2RCSR (3.6) 

We will always assume that (3.5) and (3.6) are satisfied. We also note that 
and/~ are taken as intensive quantities. The "external noise" character of 

~Q(t) and ~.R(t) implies that their parameters 2Q, 2 R, coQ, and m R are 
independent of the system size: they have the same value as in the ther- 
modynamic limit. 
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3.1. M a s t e r  Equat ion 

Substituting (3.1) and (3.2) in (2.5) we obtain a stochastic master 
equation 

aP(N, t) 
at = [Fo+F,,o~o(t)+F1,R~R(t)  ] P(N, t) (3.7) 

where F o is the operator F defined in (2.5) with Q(N), R(N) replaced by 
Qo(N), Ro(N) and 

/~I ,Q = (E-- - 1) QI(N) (3.8) 

F~, R = (E + - 1) R~(N) (3.9) 

Equation (3.5) is of the general form (2.26) with two independent white 
Poisson processes. From (2.28) we obtain 

aP(N, i) 
at 

Fo P(N, t) + 2 e [ {e~~ } av - 8 e  Fl,e - 1 ] P(N, t) 

+ 2R[{e~ R -  1] P(N, t) (3.10) 

P(N, t) is defined as the average of P(N, t) over the realizations of ~Q(t) 
and CR(t). It is the probability density which takes simultaneously into 
account intrinsic and external fluctuations. Equation (3.10) is the master 
equation for the joint description of the two types of fluctuations. When the 
values of co are distributed with the exponential distribution (2.30), (3.10) 
becomes 

8P(N, t) 
8t 

- -  = ( F o -  2oCooF1. o - 2RoSRFI,~) P(N, t) 

1 
+ 2QchQF~'o 1-- (5QFlo P(N' t) 

1 
+ 2RChRFI'R 1 --CSRF1,R F(N' t) (3.11) 

It is obvious that if the master equation (3.10) is written in the form 
(2.1) in general it will involve nonvanishing transition probabilities 
IZV(N,N+n) for any n. [We denote by I~ the effective transition 
probabilities associated with the master equation (3.10).] A general 
expression for these transition probabilities is not easily obtained. For 
illustrative purposes we consider here the two cases of external noise which 
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are more often studied in the literature. These are also the cases that we 
will consider in the examples of Section 4. The first case is that of additive 
external noise in which Q~(N) is independent of N We take 

QI(N)=aV (3.12) 

In the second case we consider a multiplicative external noise of the form 

Q~(N)=aN, RI(N)=bN (3.13) 

In the first case (3.12) we have 

{e~ ~. { e - ~  _P(N-n,t) (3.14) 
rt=O 

Substituting (3.14) in (3.i0) the master equation can be written in the 
form (2.1) (with P and W replaced by P and Ii7, respectively) with the 
following averaged transition probabilities: 

lgZ(N,N-1)=Qo(N-1)+2oaV{coo(e-~~ (3.15) 

J-"~176 *'~ n---~. ' n >  l (3.16) 

These transition probabilities take into account the effect of external 
additive noise (Q~ constant) in a master equation formulation. The 
presence of external noise modifies the one-step transition probabilities 
W(N, N - 1 )  and introduces new nonvanishing transition probabilities 
ff/(N\N-n), n >  1. Given (3.3), (3.4), and (3.12), the requirements (3.5) 
and (3.6) are sufficient conditions which guarantee the positivity of 
lgqlN, N -  1). The new transition probabilities lg~(_& N-n) ,  n >  1 are 
always positive. 

In the second case (3.13) we have 

e~~176 N] (3.17) 

e~c~,R = e~Rb~e § - I ] N  = e--O)RbN exp[(1 -- e -~'Rb) E+N] (3.18) 

The second equalities in (3.17) and (3.18) are proved in Appendix B. They 
follow, respectively, from commutation properties of the operator coQaN 
with o)Qa[E---I]N and coRbN with coRb[E +-  I]N. With (3.17) and 
(3.18) we obtain 

~o ~ ~  1 {e_O, oaN(eO, e ~ 1) }av {e~176 P(N, t)=, - " 

x ( N - 1 ) " ' ( N - n ) P ( N - n , t )  (3.19) 
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{e ~ } av P(N, t) = n~=o ~ {e- ~'sbN(1 -- e -~Rb)~ }av 

x ( N +  1)""  ( N + n )  P (N+n ,  t) (3.20) 

Substituting (3.19) and (3.20) in (3.10) we obtain the master equation with 
the following averaged transition probabilities 

ff~(N, N -  t) = Q o ( N -  1) + 20[{e-~ ~'Q~- 1)},~ 

x ( N -  1 ) - g o o a ( N -  1)] (3.21) 

ffZ(N, N +  1)= Ro(N+ 1)+ 2R[ {e-~ -- e-~~ 

x ( N +  1) -~5Rb(N+ 1)] (3.22) 

ffZ(N, N -  n) = 2Q[{e-~'e~N(e ~~ 1)n},v 

x ( N -  1)--" (N -n ) /n ! ] ,  n > 1 (3.23) 

ffZ(N, N +  n) = )~R[ {e-~'R~u(t -- e -  b~'R)" } ~,, 

X ( N + l ) " ' ( N + n ) / n ! ] ,  n > l  (3.24) 

In the same way that for the additive external noise case (3,12), the mul- 
tiplicative external noise modifies the one-step transition probabilities and 
introduces new transition probabilities of n steps for all n. The difference 
with the additive case is that now ffZ(N, N +  n) depends also on N and not 
only on n. The same is true for the new term in W ( N , N +  1). The 
requirements (3.5) and (3.6) guarantee the positivity of ff/(N, N ++ 1). 

Finally we consider the Gaussian white noise limit of the white 
Poisson noise ~o(t) and ~R(t). In this limit 

)~O[ { e~ }.v - &QF1,Q -- 1 ] --+ D QI~I,Q (3.25) 

)~R[ { e~ } ~v - &RFt,R -- 1 ] --+ D R/~,R (3.26) 

Substituting (3.25) and (3.26) in (3.10) we obtain an effective master 
equation for P(N, t) in the Gaussian white noise limit for r and CR(t). 
This equation was directly obtained in Ref. 6 and also in Ref. 7 as the 
Gaussian white noise limit of the case in which ~,o(t) and ~R(t) are 
dichotomic Markov processes. In this limit the effective master equation 
(3.10) only has nonvanishing transition probabilities f-V(N ++_n, N) for 
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n = 1, 2. We also remark that in this limit the positivity of the transition 
probabilities W(N-I- n, N) is not guaranteed since (3.5) and (3.6) cannot be 
satisfied. 

3.2. Generating Function 

A formulation of the problem equivalent to (3.10) is given in terms of 
an averaged generating function. Substituting (3.1), (3.2) in (2.8) we obtain 
a stochastic partial differential equation for F(s, t): 

This equation is again of the general form (2.26). Making use of the result 
(2.28) for the two independent processes ~Q(t) and ~R(t) we find 

OF(s,t) 1) (s~)]ff(s,t) 

s O -c~Q(s--1) Q, ( - ~ s ) - l ) F ( s , t )  

s O 

-chR(~-l)Rl(x~--~s)-l)F(s,t ) (3.28) 

F(s, t) is defined as the average of Ns, t) over the realizations of ~e(t) and 
~R(t). It is the generating function associated with P(N, t) 

F(s, t)= ~ JP(N, t) (3.29) 
N = 0  
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For the exponential distribution of co (2.30), (3.28) reduces to 

0F(s, t) 
Ot s 8 

8" s O 

1 

t 
+ 2 R I ~ R ( ! - l )  Rl(s~-~--ss)l_(51~(1/s_l)Rl[s(8/Os)]l l~(s,t) 

(3.30) 

The existence of nonvanishing transitions N-*  N_+ n, n > 1, in (3.10) is here 
recognized by the appearance in the terms proportional to )~  and 2R in 
(3.28) and (3.30) of contributions with a power in s given by the power of 
s+-"F(s, t), n >  i. In (2.10) only the power of F(s, t) and s+-~F(s, t) exist. 

3.3. Poisson Representa t ion  

We next consider the introduction of external noise in the equation 
(2.t2) for the Poisson transform of P(N, t). We assume that the fluctuating 
parameter e occurs only in the m = i term in (2.9). That is, 

(~i~-.o~V - i +  l (3.31) 

where the factor V -i+~ is introduced to conform the extensivity 
assumption for Q(N). On the same grounds we take 

vj = flV - j+  1 (3.32) 

Substituting (3.31), (3.32), and (2.17) in (2.9), (2.10) we obtain stochastic 
transition probabilities (3.1), (3.2) with 

VO,(N) VO:(N) (3.33) 
Qa(N)= V' ' R1(N) = Vj 

With Eqs. (3.1), (3.2) and (3.33), (2.12) becomes the following stochastic 
partial differential equation for f (a ,  t) 
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Of(a' t)=I O-'~ (a' ~-'d) Ro (a, ~--~) ] f(a, t) 

+[~(t)O~(a,~-~)+~e(t)R~(a,~--~)]f(a,t) (3.34) 

where 

0 "  and k I are as defined in (2.13), (2.14) but now with ~ replaced by c~ in 
0 ~' and fl replaced by fl in RJ. The operators 01, and/~t  are 

( )  (3 _V_i+  l a - ~ a  
0~ . , ~  = SS 1 a;, 

a = V-j+1 1 a j (3.36) k~ a,~ 7a aaJ 

We definef(a,  t) as the average off(a ,  t) over the realizations of ~Q(t) and 
~R(t). It is the Poisson transtbrm of P(N, t). Equation (3.34) is again of the 
form (2.26). Its average can be taken with the help of (2.28). We obtain 

3f(a' t)= [ Q~ (a' ~,a) + R~ (a' ~'a) ] f(a' 

(3.37) 

For the exponential distribution of c~ (2.30), (3.37) reduces to 

Of(a, t) 
3t 

6~ a 

+  Rf[1- R I(a 1- R 1(o /338, 
The master equation (3.10), the equation for the generating function F(s, t), 
(3.28) and (3.37) give equivalent alternative formulations of a joint descrip- 
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tion of internal and external fluctuations. Equations (3.28) and (3.37) are 
quite similar at the formal level from a calculational point of view. Both 
have the advantage over (3.10) of being partial differential equations. 
Therefore it is easier in general to deal with them than with (3.10). In par- 
ticular, the stationary solution of (3.30) and (3.38) can be found in several 
cases (see Section 4). The Poisson transformf(a, t) is more directly connec- 
ted with the probability density of the process. <7) 

3.4. Equations for  the M o m e n t s  

The simultaneous effect of internal and external fluctuations i_s_s clearly 
seen in the equations satisfied by the moments of the process (N" ) t .  By 
the bracket( ' . .  )t we indicate the average with P(N, t): 

(N--'~),= ~ NmP(N, t )=  ~ Nmp(N, t) (3.39) 
N ~ O  N = 0  

The equations for (N  m)~ can be calculated from (3.10), (3.29), or (3,37). It 
is interesting to derive these equations directly from the equations satisfied 
by (N'~)t taking the average over the external noise. Here we present this 
derivation for the factorial moments (O~,(N)). The quantities f2m(N ) were 
defined in (2.11). 

The equation for (f2m(N))~ is obtained from (2.5). Substituting in this 
equation (3.1) and (3.2) we find 

d (f2,,(N))t___m(f~m_l(N) Qo(N))t_m(f2m_~(N_ 1) Ro(N)), 
dt 

+ m(g2m_l(N ) QI(N)), ~Q(t) 

-- m( f2, ,_l(N- 1) RI(N) ), ~R(t) (3.40) 

Equation (3.40) defines (D,~(N))~ as a functional of ~Q(t) and ~R(t). The 
average of (3.40) over the realizations of ~e(t) and ~R(t) can be taken mak- 
ing use of the general formula (2.28). We obtain 

d 
-fit ( (2,,(N) } t= m(~Qm_ l( N) Qo(N) } , - m (  f2,,,- t (N -  1)Ro(N)} , 

+ .=2 n! g~e(t), l m(f2m-l(N) QI(N))t 

- )~R ~ {o)7~}.~ 6 ~ 
. = z  n] 6~R(t) ._  1 r n ( Q , . _ l ( N - -  1) R I ( N ) )  t 

(3.41) 
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In order to get a more explicit form of (3.41) we need to specify Q~(N) and 
R~(N). We restrict ourselves to the two cases (3.12) and (3.13) analyzed in 
Section 3.1. 

In the first case (3.12) we straightforwardly obtain 

d 
dt (ff2m(N) )t = m(f2m- ~(N) Qo(U) ), - m(ff2m _ ~(U- 1 ) Ro(U) ), 

n ~ 2  

In particular, for the first two moments and writing the equations in terms 
of x = N/V we have 

d 
dt (97) ,= (qo(x ) ) , - ( ro (x ) ) ,  (3.43) 

d 1 
dt (x-~)t = 2(x[qo(x) -  r0(x)] ), +-~ (qo(x) + ro(x) ), 

+ 2e{co~}=v a 2 (3.44) 

where qo(x) and ro(x ) have the same meaning as in (2.18)-(2.21). In the 
thermodynamic limit (3.42) reduces to a special case of (2.33). We next 
consider the case of multiplicative noise (3.13). We first analyze the term 
proportional to )~R in (3.41). This term can be shown to be 

2 R ~ {e--~~ }av + (hRbm -- 1 ] (s )t (3.45) 

The simplicity of the calculation of this term is due to the fact that the 
successive functional derivatives are proportional to ( ( ' 2 m ( N ) )  t without 
involving any other factorial moment. This does not occur when 
calculating (6k/6~(t))(f2m I (N)Q~(N)) ,  and the calculation of the term 
proportional to 2Q in (3.41) requires some more care. We first obtain from 
(3.40) that 

(•n--1 
6~_~(t) m(s ,(N) Q I ( N ) } , =  Jam(1 + D  m)]n(f2m(N)}t (3.46) 

where we have introduced an operator D acting on (0(m) as 

D-q~(m)=- cp(m - 1) (3.47) 
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{(DQ } av t~ n - 1  
2o ,=2 n! 6'~:"i(t-) m(f2r~-l(N)Ql(N))' 

=2o[{e~'e"'(l+D-"~ t (3.48) 

This result can be made more explicit with the following operator identity: 

eO~e~,,,o + D - m ) =  e~ea,, exp{ (1 - e-~ea)m D-m} (3.49) 

This relation is proved in Appendix B. It is a consequence of the com- 
mutation properties of -acoom with amom(1 + D-m). Substituting (3.49) 
in (3.48) and operating with D-  we find the final expression for the term 
proportional to 2 o in (3.41). Substituting such an expression and (3.45) in 
(3.41) we finally obtain the equation for (f2m(N)},: 

d (O.,(N)}, = rn(g2,,,_,(N) Qo(N)} t -m(s , ( N -  1) Ro(N) }, 
dt 

+ )~R[{e-~"b"}av+&Rbm- 1](f2m(N)} , 

q- 2Q[({e'~ v --&Qam-- l)((2,,,(N)}t 

+ ( { e t ~  - -  e-~ - -  (ooa) m(m - 1)(f20~_ I(N) }, 

..... 1 {e~Q~-,(t _e-~~ 

n = 2  

x m(m-1)2-- ' (m--n+l)Z(m-n)( f2~_1(N')) ,]  (3.50) 

In the thermodynamic limit (3.50) reduces to a particular case of (2.33). Of 
special relevance are the equations for the first two moments obtained from 
(3.50): 

d(X), 
dt 

(qo(x)--ro(x)},+[ o({e } .~-  cooa-  1) 

(3.51) 
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d(x2)t 1 
- - -dT- -  = 2<X[qo(x)  - ro(X)] ),  + -~ < [qo(x) +ro(x)]), 

m 
+ 2o({e2~'o~}~--2&o.a T M  1)(X2), 

-1- , ) ~ R ( { g - - 2 a ) R b } a v  - -  2 ~ R b  - t ) < x 2 ) ,  

~ Q  cJ a - 
+ ..p_({e2~,e~}~ _ {e e } ~ _ c o o a ) ( X )  t 

')~R ( { e - - 2 ~ R b } a  v _ { g - c o e b } a  v - t - ( f ) R b ) ~ x ) t  
V 

(3.52) 

The two sets of equations (3.43), (3.44) and (3.51), (3.52) give some 
insight into the joint effect of internal and external fluctuations. Equations 
(3.43) and (3.51) coincide with the corresponding ones obtained in the 
thermodynamic limit directly from (2.29): there is no contribution from 
internal fluctuations in the equations for ~2)t for the two examples of 
external noise that we consider. The interplay between internal and exter- 
nal fluctuations is seen in the equation for ()-~),. The two first terms on 
the right-hand side of (3.44) and (3.52) coincide. The first one gives the 
macroscopic equation and it is the only one that survives in the deter- 
ministic limit. The second one is a contribution from the internal fluc- 
tuations described by the master equation (2.1). The third and fourth terms 
in (3.44) and (3.52) are external noise contributions that already appear in 
the thermodynamic limit. They also follow from (2.29). In addition of these 
independent contributions from internal and external fluctuations the last 
two terms in (3.52) give contributions which come from the coupling of the 
two types of fluctuations. These contributions vanish in the thermodynamic 
limit and also in the limit of vanishing external noise. They are a genuine 
novel effect that only appears when both fluctuations are considered 
simultaneously. These "crossed-fluctuation" terms appear in our equations 
in spite of the implicit assumption of the independence of internal and 
external noise. We note that these terms do not exist for the additive exter- 
nal noise case (3.44). The crossed-fluctuation terms found here are not a 
peculiarity of the white Poisson noise that we have considered. A coupling 
effect of internal and external fluctuations also exists when the external 
noise is modeled by a dichotomic markov process (7'8) or in the Gaussian 
white noise limit of the theory. (6'8) The coupling effect seems to be an 
important physical consequence of any reasonable joint description of 
internal and external fluctuations. We remark that this coupling effect can- 
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not be obtained if internal fluctuations are simply modeled by adding an 
independent gaussian white noise to the stochastic differential equation 
obtained from (2.16) and (2.18), (2.19), as it is often done. 

3.5. Expansion Around the Thermodynamic  Limit 

In a macroscopic system in the presence of external noise, this is in 
general more important than the internal fluctuations which scale with the 
system size. The contribution of internal fluctuations can be calculated as a 
finite size effect by an expansion in powers of 1/V around the ther- 
modynamic limit. We present here such an expansion to first order in 1/V 
starting from the effective master equation (3.10). New features that appear 
in the unified treatment of internal and external fluctuations such as the 
contributions which couple the two type of fluctuations show up in this 
expansion. 

We define a probability density P(x, t) by 

P(x, t)--P(N, t)V (3.53) 

Substituting 8/8N by 1/V(O/Sx) in the operators E • and expanding to first 
order in 1IV, the operators in (3.10) become 

8 1 8 2 
Fo = -~xx [qo(x) - ro(X)] + 2---~ 8x--- 7 [qo(x) + ro(x)3 

r',o = ( -  7x ~-r q,(x) 

(3.54) 

(3.55) 

(3.56) 

where the definition of qo, ro, ql, and rl follows from (2.15), (3.t)--(3.4) 
and (2.18)-(2.21). Substituting (3.54)-(3,56) in (3.10) and keeping only 
terms of order 1/V we obtain 

a.P(x,at t)= (L~ +@)P(x, t)+ O(V -2) (3.57) 
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where L o is the operator defined in (2.29) and 

1 32 
Lt = ~ x 2  [qo(x) + ro(x)] 

+ -  

+?i 
n=2 

n! - ~x qt(x) ~x z q,(x) -- ~x q,(x) 
i==l 

n! ~x r~(x) ~ x  ~ r,(x) ~ r~(x) 
i = 1  

When the quantities qo, r0, ql, and r 1 contain terms proportional to V-", 
there are terms kept in (3.58) which are of order V -2 or higher. A con- 
sistent expansion in V-~ is easily rearranged in each particular case. 

There exist two interesting limits of (3.58). In the limit V ~  ~ we 
recover Eq. (2.29) in which internal fluctuations are neglected and 
P(x, t )=P(x,  t). In the limit in which external noise is neglected, 
2Q{co~2}a v ~ 0, 2e{c0~}av ~ 0 for all n, we obtain a Focker-Planck descrip- 
tion of internal noise. This description follows from a formal expansion in 
powers of 1/V of the master equation (2.1). Our result in this limit coin- 
cides with the general formal result of Horsthemke and Brenig. ~22) (For a 
discussion and clarification of the last result see Ref. 5). We also note that 
the ordinary system size expansion of the master equation (3~4) cannot be 
straightforwardly applied to our case because for V ~  oo we do not have a 
well-defined trajectory to expand around. 4 

Besides the independent contributions from internal fluctuations and 
external noise which appear in the two limits mentioned above, there is an 
additional contribution given by the last two terms in (3.58). These terms 
are a result of the coupling of internal and external fluctuations and give 
rise to the crossed-fluctuation terms discussed in Section 3.4 for particular 
cases of ql(x) and rl(x ). The general form of these terms for a large but 
finite system follows from (3.58). 

It could be argued that (3.57) is not of great practical interest for the 
calculation of/5(x, t), First it contains in general derivatives of all orders 
with respect to x. Second, the validity of the formal expansion in 1/V can 
be questioned when used to obtain a detailed result for P(x, t), 
Nevertheless (3.57) is extremely useful to obtain information on the main 
statistical features of the system, in particular on the behavior of the low- 

4 For an overview of different attitudes with respect to the thermodynamic limit of the master 
equation in the absence of external noise see the discussion following the paper by R. 
Graham in Ref. 23. 
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order moments of/~(x, t). The equations that follow from (3.57) for the 
first two moments are 

~ =  <q~176176 n! qdx) ~xq~(x) 
n = 2  t 

+ " ( -  (rt(x) a "-) =-.:..;~'e~ {~a}av 2R~_. {c~ 1)" [7- rdx)] 1 
. . . .  2 n !  -~ Z~V n 2 kOX J , n! 

~, <ql(x)E~q~(x)T-J t ~2 F a -].-!-*>, • ,=1 ~Tq1(x)L~q'(x)J 

+2"-V ( -1 ) " - I  n! 
n = 2  

d(x2)_____~ t = 
dt 2(x[q~176176176 

+22Q .=2 s {~ F OL~xql(x)j-]n-2~-~-~q1(x)x)t 

*E ] ) + 22 a s ( -1)"  {,::,o~?}~ (r,(x) c~ ,,-2 c3 ,=2 n! ~xrt(x) ~xrl(x)x t 

+ -V n! q~(x) -~x ql(x) 
n = 2  . .  t 

a qdx)x) + (q1(x) E~-s ~-2 c~2 

(3.59) 

q- ql(X) ql(x) ~ q~(x) 0--7 ql(X)X 
i = 1  t 

+~R x~ { R},v 1)"-'  V,":  n! ( -  r,(x) ~r~(x) , 

q- (rl(x)[~-~ri(x)] n-2 ~2 r~(x)x), 
+ 

i~1\  LOX / 
(3.60) 



External Poisson White  Noise in Finite Systems 693 

In the two particular cases of external noise (3.12) and (3.13) con- 
sidered in Section 3.4, the two equations (3.59) and (3.60) reproduce 
exactly equations (3.43), (3.44), (3.5t), and (3.52). In these cases higher- 
order terms in the expansi__on in 1IV of (3.57) do not contribute to the 
equations for ( x ) t  and ~X2)t. 

In the general case we have in the equation for ( 2 ) t  three different 
types of contributions. The first term on the right-hand side of (3.59) gives 
the deterministic limit. The second and third terms are contributions from 
external noise already present in the thermodynamic limit. They also follow 
from (2.29) and they vanish for additive external noise. There is no 
independent contribution from internal fluctuations. The last two terms in 
(3.59) are crossed-fluctuation terms. They only appear if qI(x) or rl(x ) is a 
nonlinear function of x. In Eq. (3.60) for ( x  ~),, the first term on the right- 
hand side gives the deterministic limit and the second one the independent 
contribution from internal fluctuations. The third and fourth terms are the 
contribution fi'om external noise in the thermodynamic limit. They do not 
vanish even if q~(x) and rl(X ) are constant. The last two terms are the 
crossed-fluctuation terms which in general only vanish for external additive 
noise. 

4. EXAMPLES 

4.1. Poisson Counting Process 

As a first simple example we consider internal fluctuations described 
by a Poisson counting process (2) with parameter eV. This is defined by a 
one-step master equation (2.1) with 

Q(N) -- ~V (4.1) 

R(N) = 0 (4.2) 

and initial condition 

P(N, 0) = C~N.O (4.3) 

The solution of (2.5) with (4.1)-(4.3) is a Poisson distribution 

P(N, t) = (c~Vt)N e -~v' (4.4) 
N~ 

We now imagine that the parameter c~ becomes a random function of 
time like in (2.t7). The fluctuations ~(t) are given by a white Poisson noise 

822/40/5-6-6 



694 Rodriguez et al. 

with parameter 2 and p(co)= 6(e)-a)o). A joint description of the two 
types of fluctuations considered is equivalently given by Eq. (3.10) for the 
averaged probability density _P(N, t), Eq. (3.28) for the generating function 
F(s, t) or the Poisson representation equation (3.37). In this example (3.28) 
becomes 

0F(& t) 
8t 

- - = ( s - 1 ) ~ V P ( s , t ) + 2 [ e ~ ~ 1 7 6  (4.5) 

whose solution is 

F(s, t) = exp{(s-- t)(~YV-2o~oV)t+2t(e ~~ 1)} (4.6) 

F(s, t) contains all the relevant statistical properties of the model. In par- 
ticular the averaged probability density is obtained as 

P(N, t)=N! 8s u N! ~ (2t)k V " k~176 u 

x e x p { - I ~ V - 2 o ) o v + k t ~  } (4.7) 

The condition ~ ~> 200 guarantees the positivity of _P(N, t) for all N and 
all t. Comparison of (4.4) with (4.7) shows how the Poisson distribution 
(4.4) is modified by Poisson white noise fluctuations of a. The probability 
distribution is now a superposition of Poisson distributions (with time- 
dependent parameter) weighted by another Poisson distribution. It is 
illustrative to see this modification at the level of the Poisson represen- 
tation. We obviously have 

f(a, t) = 6(a - eVt) (4.8) 

In this example (3.37) becomes 

8f(a, t) 8 (4 V -  2o)0 v)f(a, t) + 2(e ~~176 v(~/~) _ l ) f(a ,  t) (4.9) 
8t 8a 

This is easily solved by a Fourier transformation giving 

f ( a , t )=e -~  ~ o ~ 6 I a - @ V - 2 e ) o V + k ( t ~  ] (4.10) 

The fluctuations of e lead to the replacement of (4.8) by a superposition of 
6 functions with shifted arguments. 
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The factorial moments of (4.7) are given by 

,~ ~ (2 t )k [@V_2c  % "- t l  m (s e - -  k~__o -~.T V + ~ )  (4.11) 

The mean value ( N ) t  coincides with that of the original process (4.4) 

( N ) ,  = VS:t (4.12) 

This is in agreement with the general equation (3.43). The non-Poissonian 
character of (4.7) is shown in the second moment: 

( N 2 ) t -  (N)~ = ( N ) ,  + 2co~ V2t (4.13) 

The last term in (4.13) is the non-Poissonian contribution. 

4.2. Creation and Annihilation Process with Source 

As a second example we consider fluctuations of internal origin 
modeled by the one-step master equation (2.1) with transition probabilities 

Q(N) = c~V+ },U (4.14) 

R(N) = fin (4.15) 

where V is the volume of the system. This is a model used to study many 
different nonequilibrium physical systems, for example, maser 
amplification, (2"~7) a point nuclear reactor model, 119) and a chemical 
modetJ 18) For maser amplification N is the number of quanta in a given 
mode of the electromagnetic field, fiN is the rate at which quanta disappear 
through the walls, ?N the rate of stimulated emission, and e V the rate of 
input of quanta into the system. In the point nuclear reactor model, N is 
the number of neutrons at time t, fl the capture rate per neutron, ? the 
fission rate per neutron, and c~ the source event rate per neutron per unit 
volume. The chemical model described by (4.14), (4.15) is given by the 
reactions 

kl 

A + X ~ C  
k; 

B+ X--~ 2X 

N is here the number of molecules of the species X and e=k]c,  7=k2b, 
f i=kla, where a, b, and c are, respectively, the concentrations of the 
species A, B, C which are kept fixed. 
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The time-dependent properties of this model can be calculated exactly. 
The generating function F(s, t) is given in Ref. 21 and the equation for the 
Poisson transform (2.12) is solved in Ref. 18. Here we restrict ourselves to 
the stationary properties. A stationary solution only exists for f l - ~  > 0. In 
this case 2~ 

or equivalently 

P,,(N) =-~.. \ - - ~ ]  \-~/ \-?-iN (4.17) 

where (X)N=X(X+I)'"(x+N--t). We are here considering open 
systems and (4.17) represents a nonequilibrium steady state. The factorial 
moments of the distribution are 

(4.18) 

In particular, for the mean value and relative fluctuations of the intensive 
variable x = N/V we have 

c~ 

(x)~t = -  (4.19) 

( Jx)  ~ Cx ~ ) - < x )  ~ /~ 
= - -  (4.20) 

( x )  2 = ( x )  2 ~V 

The maximum of the stationary distribution given by Pst(N)--Pst(N + 1 ) is 
found at 

B (4.21) Xma~ = / ~ _ 7  V ( ~ -  ~') 

The above results characterize the stationary properties in a finite 
volume V. In the thermodynamic limit V ~  0% (X)st=Xma~ and the fluc- 
tuations around (x)st  vanish. In this limit the system is described by the 
deterministic equation 

dx 
-~  = -(/~ - ~ ) x  + ~ ( 4 . 2 2 )  
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The stationary solution of (4.22) for / 3 - 7 > 0  coincides with (4.19). For 
f l -V  < 0, (4.22) leads to explosion ofx. 

In the following we analyze the effect of randomness in the control 
parameters of the system. We discuss separately the consequences of e,/r 
and 7 fluctuations. General results when c~ and /~ or ct and 7 fluctuate 
simultaneously are given in the previous section. 

4.2.1.  External  Noise in the  Source  Parameter .  Here we 
take ~ ~ c~ + ~Q(t), where ~Q(t) is a Poisson white noise with parameter 2 
and an exponential distribution p(co) (2.30). In our model system ~ is a 
positive definite quantity and therefore we require that g >~ 2cb. 

4.2. I.I.  Thermodynamic Limit. We first discuss the effect of exter- 
nal noise in the thermodynamic limit (4.22). Replacing ct by c~+ Go(t) in 
(4.22) we obtain a stochastic differential equation whose stationary dis- 
tribution P~t(x) is obtained from (2.31). In this model the process x has a 
boundary at 

- 2c5 
x = Xo = / / _  7 (4.23) 

The formal solution of (2.31) gives two normalizable stationary dis- 
tributions when/~ - 7 > 0. The first is defined in the interval (0, xo) and the 
second in (x o, ~ ) .  From the stochastic differential equation we directly 
find that 

- = - -  (4.24) x~t /3 - 7 > Xo 

This implies that the solution defined in (0, x0) has to be discarded. 
Therefore a stationary distribution exists for /3-V >0.  It is defined in 
(Xo, Go) and it is given by 

Pst(x) = Ne-X/~{(fl - 7)x - (~ - 2~)} ~/~-- ~,/.-1 (4.25) 

where the normalization constant N is 

1 f c~-2ch ~o3_;./(~_~.)(/3_7)1_;/(~_~) (4.26) 
N =  F(21(/3 - ),)) exp / ch-~--~).~ 

A comparison of (4.17) and (4.25) is given in Fig. 1. The fact that P~t(x) is 
defined in (Xo, or) can be physically understood recalling that ~Q(t) is 
bounded from below, ~Q(t)>~ -2e3, but not from above. This leads to the 
inaccessibility of 'values of x < Xo, but there is no restriction at large x. 
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Fig. 1. Ptot of different stationary probabilities comparing the effect of finite volume alone 
[Eq. (4.17)] with the effect of external noise in the source parameter ~ [Eq. (4.25)] in the 
thermodynamic limit. Values of the parameters: ~ =0.1, fi = 1, 7 =0.9. Internal fluctuations 
(a) V= 100, (b) V= 1000. External fluctuations & =0.l, (c)2= 1, (d)).=0.2, (e} 2=0.05. 

All the moments  of (4.25) exist for f i - 7  > 0. They can be calculated 
from (4 .25)o r  from the corresponding particular case of (2.33) 

m m 
(4.27) 

The relative fluctuation is 

2 -2 Z6)2 
Xst - -  Xst 

-2 = d2' ( f i - 7 )  (4.28) 
Xst 

The mean value (4.24) coincides with the deterministic steady state and 
(4.28) measures the fluctuations a round  2~t due to the randomness  of  c~. 

A more  closed inspection of  (4.25) reveals a new feature caused by the 
external noise (Fig. 1). When  f l - ?  < ;~, P~t(Xo)= 0 and Pst(X) has a single 
maximum at 

c~ 
Xmax = fl 2 ' i - -  (~ (4.29) 

7 
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In this situation Xma x iS shifted from 37 due to the randomness of c~. A 
similar shift is caused by internal fluctuations when c~ is a constant 
parameter [compare (4.19) and (4.21)]. A different situation occurs for 
/~ - 7 > 2. We then have that Pst(Xo) -- oo and there is no relative extremum 
of Pst(X). This difference appears as a new kind of transition at /~ - 7 -- 2. 
Such changes of the stationary distribution induced by changes in the 
parameters of the external noise have been widely discussed in recent 
years. (1'24) For Gaussian white external noise these changes have been in 
general associated with a multiplicative character of the noise. The external 
fluctuations of the source parameter have an additive character but they 
are not Gaussian. In the Gaussian white noise limit the same results (4.24) 
and (4.28) are found for the mean value and relative fluctuations, but no 
qualitative change of Pst(X) exists for any value of the Gaussian white noise 
intensity D = 205 2. The transition found here with a change of Pst at the 
boundary x = x 0 is reminiscent of the transitions found when external noise 
is modeled by a dichotomic Markov process. (1) They are also associated 
with changes of Pst(X) at the boundaries of the process. These type of trans- 
itions seem to be characteristic of external noise with bounded realizations. 
In our case ~Q(t) is bounded from below and it evolves in a characteristic 
time 2 -1. When ~Q(t) is slow in comparison with the deterministic 
evolution, that is, 2 - 1 >  ( /~-7)  1, the process x(t) approaches Xo which is 
the steady state of the deterministic dynamics (4.22) with ~ replaced by 
~-205. The value ~ -205  is the lower bound for ~+~o(t). When ~Q(t) 
becomes a fast process, that is, 2 1< ( /~_7) - i ,  the competition between 
the deterministic dynamics and the fast-driving stochastic force moves the 
stationary distribution away from the boundary at x = Xo. 

4,2.1.2. Finite System, Setting c~=~+~Q(t)  in the transition 
probability (4.14) we are led to the joint description of fluctuations dis- 
cussed in Section 3. In this particular example we have 

Qo(N) = ~V+ 7N, Qa(N) = V (4.30) 

Re(N) is given by (4.15) and RI(N ) = 0. We have as well 2Q = 2, 05Q = 05, 
2R=0.  

The transition probabilities W(N, N+_n) are given by (3.15), (3.16) 
with the specifications above and a =  1. The original one-step process 
becomes in the presence of e fluctuations a process with nonvanishing 
transition probabilities with creation of n particles for all n. 

The stationary properties of the system can be calculated through the 
stationary averaged generating function P=t(s). Equation (3.30) becomes 
here 
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0P(s, t) c~F(s, t) 
- - =  [/~(1 -s)+) 's (s-  t ) ]  

at 8s 

+ [ ~ V ( s _  1 )+  2 ( l  VoS(s- 1) Z ~ 7 1 )  V~(s-1) ) lF(s , t )  

whose normalized F(s = 1 )=  1 stationary solution is 

F~t(s)={fl-?"] (a-ae')V/'+~ 1 - Vef (s -  1) 

where 

(4.31) 

(4.32) 

2~V 
0 = (4.33) 

7- ~v(P-:~,) 

The stationary probability distribution can be calculated from (4.32). It can 
be written as 

1 d F~t = ~ .  (1 + (SV) ~ 
Pst(N) = N! ds ~' ,=o 

I_ 7 AN 7 " ?'(1-~V)J (4.34) 

where F(a, b, c; z) is the hypergeometric function. (25) 
We note that a stationary state does not exist f o r / 3 - 7  < 0. In that 

situation F~t(s) in (4.32) is not an analytic function for [sl < 1 because it has 
a pole at s =///7 < 1. It can be checked that Pst(N) as given by (4.34) is a 
positive definite quantity under the additional requirement of g > 2(5. In 
comparison with the solution in the thermodynamic limit (4.25), we 
observe that internal fluctuations destroy the barriers found in that limit so 
that (4.34) is defined for all values of N>~0. 

The combined effect of internal and external fluctuations in the form 
P~t(N) is shown in Figs. 2-4 where fist(N) is plotted for different values of 
the parameters V and 2 (see Appendix C). The parameters V and 2 control 
the strength of these two types of fluctuations. As noted above, the boun- 
dary at xo disappears in the presence of internal fluctuations. As a con- 
sequence, the qualitative change in the form of P~t found in the ther- 
modynamic limit at / 3 - 7 = 2  is smeared out in a finite system. 
Nevertheless, for large enough V a significant difference between fl - 7 > 2 
and / 3 - ?  < 2 persists in the height of /ss t(N ) at N =  Nma ~. AS the system 
size becomes small, internal fluctuations dominate the system and no 
peculiar behavior is found at fl - 7 = 2. On the other hand for a fixed value 
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Fig. 2. Plot of the stationary probability (4.34) for different values of V and f l - 7 > 2 .  
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xo = 0.95. 

o 
o 

In- 

o 
o 

o o 

0.00 

/ 
0 - 50  xo  I . O0 

d 

1 .50  2 ,00  
N / V  

2 .50  

Fig. 3. Same as in Fig. 2 but with ).=0.2 ( f l -y<) . ) .  Xo=0.8. 

--4 
3 . 0 0  



702 Rodriguez et al. 

o 
o 

g~ 
I0_ 

> 

g 

0 
0 

O, 
N I V 

k 
, I 

2.50 3,00 

Fig. 4. Same as in Fig. 2 but with 2 = 1 (fl - ? < 2). x 0 = 0. 

of V, increasing the value of 2 > f l -  7, /5=t(N) moves to smaller values of 
N/V. This is due to the fact that  increasing ;~ implies that  c~ = c~ + {o(t) 
takes smaller values because {o(t)>~ - 2 &  

It  is illustrative to see how the result (4.34) is reobtained making use 
of the Poisson representation of the master  equation. Equat ion  (3.38) 
becomes in this example 

8f(a, t) 
a---7-- = - ~aa [(~ - 2aS)V+ (2 - / 3 ) a ]  + 7 ~ a  2 a 

[ 1  ]} 
+ 2 1 +CoV(~V/Oa) 1 f(a, t) (4.35) 

A stat ionary solution of (4.35) can be found with the t ransformat ion 

f=t(a) --- e - a / ~ 1 7 6  

2a 

(4.36) 

(4.37) 

U(y) satisfies Kummer ' s  equat ion ~25) in the form 

yU,,(y)+[2 (~-)~Eo)V ] y ~7,(y) - (1 + o) v ( y )  = o 
7 

(4.38) 
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The normalized (OOSo dafst(a) = 1) stationary solution fs~(a) is 

- - -  " ((5 V) ~ e -"/C~ - ~.~,)v,>.? - 
f,,(a) = F ( l - a -  2e5) V/7 ]) 

x M(O+('-~'~)V (,-;o~)V) , ; y  (4.39) 
7 Y 

where M(a, b; y) is the confluent hypergeometric function. (25) Substituting 
(4.39) in the transformation formula (2.7) it is easy to recover the 
stationary distribution P~t(N) (4.34). 

The factorial moments of the distribution can be calculated either from 
(4.32) or (4.39) 

(D,,,(N--))~t dm~'(s) ,=1 f "  ( 7---~--)'T(~-2(h)V'] 
ds "~ = ~o amf~'(a) da = \ ~ _  :;2 k ~ J , ~  

x F (  - m ' - O ' ( ~ : - ; ' c h ) V ; I  7 ( /~-  7) ~'V) /̂ (4.40) 

For the calculation of the first few moments it is easier to solve the 
equations for the moments given in general in (3.42). In this example the 
equation for (~ , , (N ) ) t  is a linear equation which includes other factorial 
moments ( ~ ( N ) ) ,  with l<~m. In this way we can also obtain the time 
dependence of the factorial moments. In particular one obtains that a 
stationary value is reached as t --* co only for fl - ), > 0. 

The effect of the external fluctuations of c~ in the statistical properties 
of a finite system shows up when comparing (4.40) with (4.18). In par- 
ticular we find for (~)~t the same value (4.19) obtained in the absence of 
external noise. For the relative fluctuation we have 

()?)~t = ~--V + - - ~  (fl - ~') (4.41) 

In this example the relative fluctuation is just the addition of the same 
quantity in the absence of external noise (4.20) with the one in the ther- 
modynamic limit (4.28). This simple result as well as the fact that (:~)~t is 
independent of the external noise parameters is in agreement with our 
general discussion of the equations for the moments in Section 3. It is due 
to the additive character of the external noise considered. 

4.2.2. External  Noise in the  Ann ih i la t ion  Parameter .  We 
now study the situation in which the control parameter in (4.15) becomes a 
random function i~ ~ fl + ~R(t). The random process ~R(t) is again taken to 
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be a Poisson white noise with parameter 2 and an exponential distribution 
p(co) (2.30), The physical requirement of positivity of fl is guaranteed by 
taking fi>~ 205, 

4,2.2,1~ T h e r m o d y n a m i c  Limit, The main difference with the 
previous case of e fluctuations is that the noise term now has a mul- 
tiplicative character in the stochastic differential equation obtained when fi 
is replaced by fi + ~ R(t) in (4,22). In order to discuss the stationary proper- 
ties of the process x( t )  it is convenient to distinguish two cases: 
( i ) /~-  7 - 205 > 0 and (ii) f i -  ? - 205 < 0. The physical difference between 
these two cases is quite clear. Since ~R(t)/> -205, in the first case the damp- 
ing coefficient fl - 7 of the deterministic equation (4.22) remains positive for 
all realizations of ~R(t). The system is thus expected to reach a well-defined 
steady state. In the second case there are realizations of ~R(t) for which the 
damping coefficient is negative. For such individual realizations (4.22) 
leads to a divergence of x( t )  as t -~ Go. 

(i) f l -  ;~ - 205 > 0. The stationary distribution P~(x )  is obtained from 
(2.31). The process has a boundary at 

0r 
x = Xo = _ (4.42) 

The process x( t )  cannot reach values x >  xo because ~R(t) is bounded from 
below. The normalized distribution function in (0, xo) is 

P~,(x) = N x l / e [ e  - ( t ~ - ?  - 205)x] x/(a~' - ~ - "  ~ (4.43) 

where 

N = ( f i -  ~/-- 205)1 + 1/4 
(4.44) 

~ / ( ~ - ~ - ~ ) +  l/~B(2/(fl - 7 - 205), 1/05 + 1) 

and B is the fi function, (25) The stationary distribution (4,43) is nor- 
realizable for all values of the parameters satisfying f i -  ~ - 205 > 0, The for- 
mal solution of (2.31) cannot be normalized in (x o, co). 

All the moments of the stationary distribution (4.43) exist. They can 
be calculated from (4.43) or from (2,33) particularized to this example: 

(1/05+ 1)m 
2~ = x~' ( 4 . 4 5 )  

(1 + (/~- ~)/[o(t~- ~ - 205)])m 
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In particular for the mean value and relative fluctuation we have 

Xst 
/ ~ - ~ - , t o 5  + ,~05/(I + 0 5 )  

2 - 2  2052 Xst - -  Xst 
-2  xst (1 +o3)[(I + 205)(/{- y -  205) + 205] 

(4.46) 

(4.47) 

The mean value (4.46) does not coincide with the deterministic stationary 
state e/(fl- ~) because of the multiplicative character of the noise. 

The stationary distribution (4.43) shows a transition of the same kind 
that we discussed in the case of fluctuations in the parameter e (Fig. 5): 
(4.43) implies that P s t ( 0 ) = 0  for all 2 and P s t ( X o ) = 0  for 2 > f i - 7 - ) x 5 ,  
while P~(xo) = co for 2 < f i -  y - 2c5. When Pst(Xo) = ov there is no relative 
extremum of Pst(X) but when Pst(Xo) = 0 there is a maximum at 

(4.48) Xmax = (/~ _ 7 _ , ~ ) ( 1  --  05) + , t ~  

(ii) r -  y - 205 < 0. When r -  ~ - 205 - ,  0 + the boundary at Xo goes 

o_ 

> 

4- 

o 0 .00  
r 

O,5O I ,O0  N 1 ./50 V 2. oo 2.50 

1 

3 ,90  

Fig. 5. Plot of different stationary probabilities comparing the effect of finite volume alone 
[Eq. (4.17)] with the effect of external noise in the annihilation parameter fl in the ther- 
modynamic limit [Eq. (4.43)]. Values of the parameters: c~ = 0.1, r =  i, 7 = 0.9. Internal fluc- 
tuations (a)V=100,  (b)V=1000.  External fluctuations o5=0.1, ( e )2=2 ,  (d)2=0.2,  
(e) 2 = 0.05. 
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to infinity and f o r / / - 7 -  2(5 < 0 we find a stationary distribution defined 
in (0, oe) and normalizable for f l - ) ,  >0.  (Note that this condition is 
automatically fulfilled w h e n / ~ - ? , -  2(5 > 0). The stationary distribution is 
still given by (4.43) but with a different normalization constant 

(~ _ r +  )o(5)~/~+ 1 
N' = (4.49) 

~/~ , -~  + ~-~ /~B(1 / (5  + 1, 2/(~, - / ~ +  2(5) - 1/(5) 

In this case P~t(x) has a maximum at X=Xmax (4.48). Therefore we find 
that in spite of the existence of realizations of the external noise for which 
x(t) becomes unstable, on the average the system reaches a steady state. 
This steady state has an important peculiarity which can be understood as 
a manifestation of the destabilizing realizations in which /~+ ~ R ( t ) - ?  < 0: 
there is no value of 2(5 consistent with / ~ - 7 -  2(5 < 0 for which all the 
moments 2s' ~ exist. More precisely ff~ diverges when m > m o =  
(fl- ' /)/(5(? - f l +  2(5). When m < me, Eq. (4.45) remains valid. 

4.2.2.2. Finite System. The general discussion of Section 3 applies 
to this case with 

Ro(N ) = fiN, RI(N ) = N (4.50) 

Qo(N) is given by Q(N) in (4.14) and QI(N)= 0. The noise parameters are 
2R=2,  (SR =(5; 2Q =0. The transition probabilities Vg(N, N+_n) are given 
by (3.21)-(3.24) with these specifications and b =  1. We now have an 
opposite effect to the one mentioned in the case of fluctuations in the 
source parameter: we now have nonvanishing transition probabilities with 
annihilation of n particles for all n, while no creation process with n > 1 
exists. 

In this example, equation (3.33) for the generating function is 

OF(s, t) OF(s, t) 
Ot =c~V(s -1 )F( s , t )+[ f l ( 1 - s )+ 'Z ( s - t ) s ]  Os 

I 1 + 2 1 - (5 (1  - s)(?/Os)- 1 -(5(1 - s )  F(s, t) 

Introducing the variable 

(4.5t) 

and the parameters t = ~V/7, u = 1 + 1t(5; v = 1 + ( f l -  7)/[(5(fl-  7 - 2(5)3. 

(s - 1)y 
z = (4.52) 
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The stationary generating function Fst(z) satisfies the hypergeometric 
equation 

+ [ v - ( t + u + l ) z ]  aFar(Z) tuF t(z)=0 (4.53) 
dz 

whose general solution is (25) 

Fst(z)=AF(t ,u ,v;z)+Bz~-~'F( t -v+l ,u-v+l ,  2 - v ; z )  (4.54) 

The constants A and B have to be chosen in such a way that F~,(s) is 
analytic in s =  0 and F~t(s= 1)=  1. The first requirement guarantees the 
existence of fist(N) [see (3.29)] and the second one is the condition of nor- 
malizability of fist(N). As we did in the thermodynamic limit it is con- 
venient to distinguish between the cases ( i ) f i - ) , - 2 0 3 > 0  and 
(ii) f l - 7 -  203 < 0. We always take ~, as a strictly positive quantity. 

(i) f i - 7 - , t 0 3 > 0 .  In s = 0 ,  z = z ~ = - 7 / ( f i - y - 2 0 3 ) < 0  and z t-~ 
diverges at z = 0 ( s =  l)  because t -  v < 0, so that the second solution in 
(4.54) cannot satisfy the normalizability condition. Therefore we take B = 0 
and the normalization condition implies that A = 1. 

The probability distribution can be written as 

= + - ?  ..... 
f/st(N) AT! d S  0 - ~ - ~ \ / ~ - ) , ' 2 0 3 /  \ /~'~/--203 

(4.55) 

where F(a,b, c;z) is the hypergeometric function. (2s) The positivity of 
fist(N) is guaranteed by the requirement f i-2(5~>0. When fl>203 all 
arguments of F in (4.55) are positive. 

(ii) f l - 7 -2c5  < 0. In this case zl > 0  and it is more convenient to 
write the general solution of (4.53) as 

Fst(z)= A'F( t, u, t + u - v  + 1; I - z )  

+ B ' ( t - z ) ~ - ' - " F ( v - u , v - t , v - t - u + l ; 1 - z )  (4.56) 

Recalling the condition /~-2ch~>0 we observe that z~ > 1 and therefore 
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(1 - z )  ~- ' -" has a pole at z =  1 <z~. Therefore we set B' = 0  and the nor- 
malization condition gives 

A,=[F(t ,u , t+u_v+l ,  1)]_ l = F ( t + u - v + l ) F ( 1 - v )  (4 .57)  
s  1) s  1) 

A' is only well defined when 1 -  v > 0 which implies /7 -y  > 0. This con- 
dition of existence of a steady state is automatically guaranteed in the case 
/ 7 -  ~ - 2o3 > 0. It is interes t ing  to  no te  that  this is the  s a m e  c o n d i t i o n  found 
in the absence of external noise (4.17), in the thermodynamic limit (Sec- 
tion 4.2.2.1) as well as in the case of external noise in the parameter e (Sec- 
tion 4.2.1 ). 

T h e  probabi l i ty  d i s t r ibut ion  is g iven  by 

A'N~. {c~;/7 + 1/(5+ (fl--7)/[Ch(?~--fi+2(h)]}N 7--fl+ 
( _ ~  1 2 c~V 

x F - - - 4  - - ,  N + - - ,  
co ~ ,_ /7+  ~o5 o; 

~ v  ,~ ( v -  ~ + , ~ ) )  
N + ~ +  + 1; 1 - (4 .58)  

o c~ 

~0._ 

> 

o 

o 
0 .00  0 .50  l ,OO 1-50 2 .00  2 ,50  3 ,00  

N I V  

Fig. 6. Plot of the stationary probability (4.55) for different values of V a n d / ~ -  y - Ze5 > 2. 
e=0.1,  f l = l ,  y=0.9,  ~ = 0 . 1 ,  2=0.05. (a) V=I00,  (b) V=500, (c) V=1000, (d) V=ce .  
xo = 1.05. 
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The positivity of/sst(N) is guaranteed for all values of the parameters con- 
sistent with f l - 7 -  205 < 0 and fl > 205. This can be seen from the integral 
representation of F. (25) 

In Figs. 6-8 we have plotted Pst(N) in different situations (see Appen- 
dix C). These figures show the combined effect of internal and external fluc- 
tuations. The same basic consequences of including internal fluctuations 
found in Figs. 2 4  are also seen here: the change of/ss~(x) found at 2 = 
f l - 7 - 2 c 5  for V--* oo is smeared out in a finite system. A difference is now 
that as the noise parameter 2 is increased the probability distribution 
moves to larger values of N/V. This is again so because /~ takes smaller 
values when increasing 2. 

For completeness we give the equivalent solution of the problem in 
terms of the Poisson transformf~t(a). From Eq. (3.38) and with the trans- 
formation 

fst(a) = a~V/~- le- [(~-~ ~)/~]~UI(YI) (4.59) 

f i - 7 -  2c0 
Y1 = a (4.60) 

7 

UI(Y1) satisfies Kummer's equation in the form 

y d2U, 1 gx UI(Y1) = 0 (4.6l)  
~-d~ + 05 dY~ fi_ ~_ ,~  

o 

>- 

d 

i ~ I ] 
i 

0 i O 0  0 , 5 0  f iOO Xo 1iSO 2iOO 2150 3 . 0 0  
N / V 

Fig. 7. S a m e  as in Fig.  6 bu t  wi th  2 = 0.2 (0 < f l -  7 - 2co < 2). x o = 1.25. 

822/'40/5-6-7 
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Fig. 8. Same as in Fig. 7 but with 2=2  (f l -7-) ,e3<0).  Xo=0. 

Choosing the normal izab le  solut ion of this equa t ion  we find for 

/~-7-203>0 

f~,(a) = 
F ( [ ( 1  + 03) ( f l -  7) - 2032]/03(fl-  7 - 203)) 

v ( ~ v / y )  vE (1 + 03)/033 

x ( f i -  7 -  203) E(~-, ;,~,)/,> 

X g ) " 

- 7 - 2 ( 5  7 o5' -7 
(4.62) 

where U(a, b; c) is the second K u m m e r ' s  solut ion3 2s) F o r  f i -  7 - 203 < 0 we 
find 

At(a ) = V[o~V/7 - 1/03 + 2/(7 - f i +  203)1 F [ 2 / ( 7  - f i +  203) + 1] 

V(c~V/T) F[2/ (T  - f i +  203) - 1/03] V(1 + 1/o3) 

• a:~V/y 1 
7 

x U - - - _ +  ,-  �9 a 
o) 7 - f l + 2 0 3  7 03' 7 

(4.63) 
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The probability distributions (4.55) and (4.58) can be recovered from 
(4.63), respectively. 

Useful quantities to investigate the consequences of the joint descrip- 
tion of internal and external fluctuations given here are the factorial 
m o m e n t s  ~Qm(N))t. Given an arbitrary initial condition, the time-depen- 
dent value of (~,,,(N))~ can be calculated from (3.50), which in this case is 

d 
dt (Qm(X))t = m(7 - fi)(Qm(U))t + m(m -- 1) ~ (12m_ I(N)),  

~ m 2 0 3  2 

+ r n ~ V ( Q , ~ _ ~ ( N ) ) , + ~  (g2,,(N))t (4.64) 
1 +me3 

Equations (4.64) are an infinite set of coupled ordinary linear differential 
equations which can be solved starting from m = 1. The stationary values 
(~2m(N))~ can also be calculated from (4.55) and (4.58) or alternatively 
from (4.62) and (4.63). When f l -  7 - 203 > 0 all the factorial moments exist. 
They are given by 

( t 
( / ~ -  ~ )t03(/~ - ~, - .ac~) ] m \ g  - 7 - ,~03/ 

In the case f l - 2 - 2 o 3  < 0  the stationary factorial moments with m>7 
mo = ( f i -7) /03(7-  f l+  2e3) diverge. This can also be seen from (4.64). The 
same result (4.65) is valid for m < mo. This condition of existence of the fac- 
torial moments is the same that we found in the thermodynamic limit. 
Therefore, the consideration of finite size effects changes the stationary dis- 
tribution and the values of the moments but does not modify the con- 
ditions for their existence. As the more important features of the 
probability distribution we consider the mean value and the relative fluc- 
tuation. The mean value (s coincides with the one find in the ther- 
modynamic limit (4.46). It is independent of the volume of the system. This 
is so because Q(N) is a linear function of N. For more general function 
Q(N) we already discussed in Section 3.5 that (:?)~t is expected to depend 
on V through a "crossed-fluctuations contribution." Such crossed-fluc- 
tuations contribution is found in this example in the relative fluctuation as 
a consequence of the multiplicative character of the noise 

= 2032  

(s ~V ( l+03) [ ( l+203) ( f l_y )_22a5  z] 

2~203" - x0321-(1 + 2 0 3 ) g -  2(1 + 03)~] 
+ (4.66) 

~V(1 + e3)[(1 + 2e3)(fi- y) - 2~e3 2] 
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In (4.66) we have made explicit the three contributions which exist. The 
first one was already obtained in (4.20). It corresponds to the case in which 
there is no external noise. The second one was obtained in (4.47) and gives 
the relative fluctuation in the thermodynamic limit. The third term is the 
crossed-fluctuation contribution which comes from a coupling of internal 
and external fluctuations which exists in a finite system. 

4.2.3. External Noise in the Creation Parameter. Finally we 
consider fluctuations of the parameter 7 in (4.14): ~ f + ~ Q ( t ) .  The 
process ~Q(t) is characterized by parameters 2 and 05 and has an exponen- 
tial distribution (2.30). We require that ~ ~> 205. This situation differs from 
the case of e fluctuations in that ~Q(t) appears now in the thermodynamic 
limit as a multiplicative noise. On the other hand, it is physically more 
closely related to e fluctuations than to fl fluctuations because it produces a 
random creation of particles. 

4 .2 .3 ,  I. T h e r m o d y n a m i c  Limit .  The stochastic differential equation 
is now given by (4.22) with ), replaced by ~+  ~e(t). The main difference 
with the case of fl fluctuations analyzed in Section 4.2.2 is that now, for all 
values of 2 and o5 there are realizations of the noise in which [1 - ?, becomes 
negative, leading to divergent trajectories of x( t ) .  Nevertheless, a stationary 
distribution exists which can be obtained from (2.31). The process has now 
a boundary at 

(4.67) x~ f+ ;s5 

The noise ~Q(t) appears now in the stochastic differential equation with a 
different sign that for fl fluctuations. As a consequence the process x ( t )  can- 
not reach now values x < xo similarly to what happened for ~ fluctuations. 
Thus the stationary distribution is defined in the interval (xo, oo): 

p~ t ( x )=Ar~c -1 /~ , [ (~_7+2ch)x_o~] : . / r  ~+aa) - i  (4.68) 

This distribution can be normalized if/? - ~ > 0 and the normalization con- 
stant is 

N = B( 1 / 0 5 -  2Xo/CZ, 2Xo/Or cr ;~~ 1 (4.69) 

By the same reasons that in the case of 1~ fluctuations with 
f l - 7 - 2 o 5  <0,  there are no values of the parameters for which all the 
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m omen t s  xs" ~ exist. Fo r  m > (fi - `7)/cb(fl - `7 + 205) = mo, x~  diverges. This is 
easily seen f rom (4.68) or  (2.33). F o r  rn < m o  we find 

~.~ ~ B (  1/00 - 2Xo/O~ --  m ,  2Xo/Ce) 

x'~ F (  1/00 --  2xo/o~ --  m )  F(1 /00)  

F(1/Co - m )  I'(1/Co - 2Xo/~) 
(4.70) 

and in par t icular  

x~t = (4.71 ) 
/~ - ,7 + ,~a5 - , ~00 / (  1 - 00 ) 

2 - 2  ,~( .~ 2 
Xst - -  Xst __ 

x~ t-2 (1 - 00) [(f i--`7 + 2o5)(t -- 200) - 2c53 
(4.72) 

The  s ta t ionary  dis tr ibut ion (4.68) shows the same sort  of  t ransi t ion 
discussed for 0c and /3 f luctuations now at  2 = / ~ - ' 7 + 2 a 5  (Fig, 9): 
P,~t(x0) = co if 2 </~ - `7 + 2(5, while P~t(Xo) = 0 if 2 >/~ - '7 + 2o3. In the first 

o 

e 

b 

0,00 0.50 1,00 1.50 2.00 2.50 3.00 
N / V  

Fig. 9. Plot of different stationary probabilities comparing the effect of finite volume alone 
[Eq. (4.17)] with the effect of external noise in the creation parameter 7 in the thermodynamic 
limit [Eq. (4.68)]. Same values of parameters than in Fig. 5. 



714 Rodriguez et al. 

situation there is no relative extremum of P~t(x) and in the second one 
there is a maximum at 

(4.73) X m a x =  (/~ - -  ~ q- ~(,O)(1 "-}'- ~ )  - -  .).(/) 

In spite of the different origin of the fluctuations, the similarity of the dis- 
tributions shown in Figs. 9 and 1 is quite remarkable. 

We finally note that there are important differences in the stationary 
distributions obtained in the case of/? and 7 fluctuations. Even the interval 
of definition is different. In this respect we note that if we were to use 
Gaussian white noise instead of Poisson white noise, we would find no dif- 
ference between/3 and 7 fluctuations. In the two cases there is no value of 
the Gaussian white-noise parameter for which all the stationary moments 
exist. The positivity requirement of /~ and 7 cannot be fulfilled with a 
Gaussian white noise. As a consequence there are always realizations in 
which the process is unstable and it is not possible to distinguish between 
fluctuations of the creation parameter 1' and fluctuations of the annihilation 
parameter/~. 

4.2.&2. Finite System. In the notation of Section 3 we now have 

Qo(N) = ~V+ ~N, QI(N) = N (4.74) 

Ro(N) is given by R(N) in (4.15). The transition probabilities W(N, N+ n) 
are given by (3.21)--(3.24) with 2 o =)4  2e = 0; coo = m and a = 1. In the 
same way that in the case of fluctuations of the source parameter there 
exist nonvanishing transition probabilities with creation of n particles for 
all n, while the annihilation process is only possible for n = 1. 

The equation for the averaged generating function (3.30) is in this case 

OF(s, t)= c ,V(s-1)  F(s, t) + [B(1 - s) + 1)] 0F(s, t_____)) 
0t 0s 

t ' 1 +2 l--~(s--1)s(O/Os) 1--&(s--t)s(O/Os) F(s,t) (4.75) 

We have not found a steady state analytical solution of (4.75). 
Nevertheless, substituting (3.29) in (4.75) leads to a recursion relation 
which permits a numerical calculation of/5~t(N ) (see Appendix C). Results 
are shown in Figs. 10-12. As in previous cases, internal fluctuations smear 
out the change of shape of P~t(x) found in the thermodynamic limit at 2 = 
/~-~+,~c5. For small values of V internal fluctuations dominate the 
stationary distribution which is essentially the same for any of the three 
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oo 

~4 

:> 

o 0.00 O. 50 ~ , O0 ! , 50 2,  O0 
N / V 

I . . . . .  q 
2 ,50  3 . 0 0  

Fig. t0. Stationary probability (C2) corresponding to fluctuations of the parameter 7 for dif- 
ferent values of V and # - ~7 + 2o3 > 2. Same values of parameters than in Fig. 6. x 0 = 0.95. 

r 
0,00 0 ' . 50  ~, l I . . . . . . .  l .... t 1,00 1.50 21.00 2,50 3,OO 

N I V 

Fig. 1i. Same as in Fig. 10 but with 2 = 0 . 2  ( f l -77+2~3<2).  Xo=0.83. 
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# 

la_ 

> 

o o 

o 0 .00  2 .00  2 .50  3 .00  Xo 0,50 1,00 1.50 
N / V 

Fig. 12. Same as in Fig. 10 bu t  wi th  ,l = 2 (/3 - 7 + 2c5 < '1). Xo = 0.33. 

cases of external noise that we have considered. On the other hand, it is 
interesting to note that for finite V, fluctuation in the source parameter c~ or 
in the creation parameter 7 lead to very similar stationary distributions 
which are notably different from the ones corresponding to fluctuations in 
the annihilation parameter (compare Figs. 10, 11 with Figs. 2, 3 and 6, 7). 
This is most remarkable given the fact that, as already mentioned, a stan- 
dard treatment in the thermodynamic limit with Gaussian white noise does 
not distinguish/3 fluctuations from 7 fluctuations. 

The factorial moments (g2m(N)) can be analyzed from Eq. (3.50). We 
first note that not all the moments exist in the stationary state. From (3.50) 
it is immediate to see that the factorial moments with r e > m 0 =  
( / ? - f ) / c S ( / ~ - f +  2(5) diverge in the steady state. For m < rno a recursion 
relation can be given for the stationary factorial moments. To this end, it is 
convenient to start one step before (3.50): taking the average over co with 
an exponential distribution in (3.48) and substituting in (3.41) we have 

d 
dt <Om(N) >t = m ( ~ -  t~)<Qm(N) >, + m(m - 1) ~<g-2 m_ I(N) >t 

+ m o ~ V < ~ 2  m l ( N ) > t  

[ ' ] + 2 1-eSm(1 + D - m )  oSm(1 + D m ) -  1 (Qm(N)>, 

(4.76) 
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Solving in the steady state we find the following recursion relation: 

[(1 - ~5m)(fi - "j) - -  ) .o32m ] <f2,,(U) >~t + { - c5(m - 1)2(fl _ f )  _ (1 - cDm) 

x [(m - 1 )~ + ~z V] - 2(52(m - 1 )(2m - 1 ) } <f2 m_ I(N) )~t 

+ o 3 ( m -  1 )2[ (m-2) , ]+c~V-2do(m-Z)]<O, ,_z (N) ) s t=O (4.77) 

This relation permits a recursive calculation of all the moments of fist(N). 
In particular we recover (4.71) for the mean value. This coincidence is for 
the same reasons discussed in the case of fl fluctuations. The relative fluc- 
tuations are given by 

2 = ~ V  + (1 - ( 5 ) [ ( -  2(5 + 1 )(fl - "7) - 2 2 ~ 2 ]  

; ~ =  [ ( 1  - o~ ) (2 /~  - y )  - ;~a~; ] 

+ ~ V(1 _ O3)2[( t _ 2o3) ( /~_  ~) _ 2 2 ~ 2  ] (4 .78)  

where a crossed-fluctuation term of the same nature than in (4.66) has been 
made explicit. 
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A P P E N  D I X  A 

A proper definition of white Poisson noise zW(t) is given by a limit in 
which the duration of the pulses of a generalized Poisson process z(t) 
(shot noise) goes to zero. (12) This last process is defined by 

n(t) 

z(t) = ~ o) ,h( t -  ti) ( a l )  
i = 1  

where n(t) is a Poisson counting process with probability 

P(n(t) = n) = e - ; '  (2t)~ (A2) 
n! 

and the t; are uniformly distributed in the interval (0, t). The function 
h ( t - t i )  is a pulse attached to the time ti such that h ( t - t i ) - - 0  for t < t~. 
The pulses are weighted by co~ which are random independent variables 
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with a probability distribution p(co). The characteristic functional of z(t) 
is(14,26) 

r  - l l  (A3) 

In the limit in which the pulses h ( t -  t~) become fi functions (A3) becomes 
the generating functional (2.24) which defines white Poisson noise. (~~ 

From (A3) and (2.24) the cumulant generating functionals O,[v] and 
~9~[v] are, respectively, 

O,[v3=;~ ~.{~o"},v dr, as,.., ds, ,h(s l - t , ) . . .h(~- t , )  
~ 7 ~  I 1 t l  

x v(s l )" 'v (s . )  (A4) 

~ i "  fs 
0~'[v] = 2 ~ {co"}.~ ds v"(s) (A5) 

Defining the cumulants of the process z(t) in the standard way by 

k, ( t , , . . . ,  t . )  = i - "  &v(~t)--.-.-~v(t,) = 0 (A6) 

and the same formula for zW(t) with r replaced by ~07[v] we find 

k.(t, ..... t.)=~.{co"}av dsh( t , - s ) . - . h ( t , - s )  (A7) 

k~'(tl) = )L{co },v, k~(tl,..., t , )= ; t { co"} , v6 ( t~ - t z )6 ( t~ - ta ) " ' 5 ( t~ - t~ )  
(A8) 

An equivalent definition of the white Poisson noise zW(t) is given (14/by 
the stochastic differential equation 

5'(t) = zW(t) (A9) 

where the probability density P(y, t) of the process y(t) satisfies the master 
equation 

aP(y, t) F -- ). | P(y - co, t) p(o~) dco - 2P(y, t) (A10) 
Ot J 



External Poisson White Noise in Finite Systems 719 

The average of z(t) with a functional u[z] can be calculated from the 
general formula (1~ 

<z(t)u[z]>= -#. ml '"  dt,,k~+~(t,t~,...,t,) 
, ' 7 ~ 0  

/ 8"u[z] \ (All)  
x \~z(t~)-." ~z(t,)/ 

Substituting (A7) and taking a rectangular pulse h(t) 

h(t) = J0, t<0 ,  e < t  (a12) 
A, 0 < t < ~  

we find 

1 t t 

n = 0  ,v/! 

• Ao+, /  .\ (A 31 
\6z(t,)...az(t.)/ 

With the change of variables ~i-- ( t -  t~)/s, z = (t-s)/~, (A13) is written 

f/L fo <z(t)u[z]>= )~{CO"+'}a~ dZ dT1"" #%(A~) "+ '  
n = O  

• (az(t •"u[z] (A14) 

The white noise limit in which z(t) ~ zW(t) is given by e ~ 0, A ~ oo with 
eA = I. In this limit 

o = ,  . \ az"(0 / 

which reproduces (2.25), This formula can also be directly obtained from 
the general result of Hanggi (1~ which is valid for white noise processes: 

< zW( t) u[z] > = ; ~  f i ~z] U[Z] ) (A16) 

where 

io( O at ~"[[~'] (A17) 
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and ~7[v] is given by (A5). We finally remark (~~ that a direct substitution 
of (A8) in (A11) for the white noise process does not reproduce the correct 
formula (2.25). 

The relation of white Poisson noise with the dichotomic Markov 
process and the Gaussian white noise has been studied by Van den 
Broeck.(16) 

A P P E N D I X  B 

In this appendix we derive the equalities used in (3.17), (3.18) and 
Eq. (3.57). Both operator relations can be obtained from the following 
operator identity proven below: 

exp{A } exp{B} =exp I(e~~ l ) A + B ] c o  (B1) 

where A and B are two operators whose commutator is 

[A, B] = co(A + B) (B2) 

(3.17) follows from (Bt) with A = coQa)~\ B = coma(E- - t )N and co = coQa, 
Equation (3.18) follows from (B1) with A = mR bN, B = mR b(E + - 1 )N and 
co= --coRb. Finally, (3.57) is obtained from (B1) with A = -acoQm, B= 
acoRm(1 + D - m )  and co= -acoQ. 

In order to get (B1) we use the Campbell-Hausdorff formula ~27~ 

exp{A} exp{B} = exp{t/(A, B)}  (B3) 

with tt(A, B) given by the following expression: 

Pl qt qm 

r/(A, B) = 2 ( - l l m - '  [ '~"  "rL']B " "r"~" B" "" ~'"""/~3 
m~, m ~ 2-- . . . .  ;~ . . . .  i" (B4) [E~=, (Pi+qj)] Hk=, (P~. qk T) 

P i +  q i ~  i . " 

where 

[CDE...~--] = [ . . -  [ [ C ,  D ] ,  E ] - - . Y ]  

By using (B2) we obtain 

[A] = A, [B] =B, 
ql 

[Ah. . .  B] = coql(A + B) (ql>O) 

(Bs) 

(B6) 
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and 

ql qm 

[ A i~... i~... B . . .  i~ ] 
m + m 

= 6o x2 (P' q')coql( - 1) Z2 P;(A + B)[1 - 6q[,O(1 -- 6p2,o)] , (Pl = 1) 

(87) 
P2 qm 

[BA. . .  A . . .  ~... B] 

=cox'~(P'+q;)(--1)Z;P;(A+B)(1-c~p2,o), (p~ = 0 ,  ql = 1) (88)  

where m/> 2, p; + q;~> 1, and 6., b is the Kronecker  delta. Then we have 

t / ( A , B ) =  (n+I)-----~(A+B)+ ~ ( - l ) m - ~  
n = 0 m >>- 2 m 

i m + m • 2 ~oz~ . . . . . . . . . . .  ~,  ~ , ~ , ( -  1)z~ ~;E1 - ~q,,~,o(1- ~ ,o )3  ] 
P i +  q i •  1 [~.r~ (Pi + qi) + 1 + ql ] ]~r~= 2 (Pk ! qk ! )qi  ! J 
i=2. . .m q~ ~i5 

x ( A + B ) +  ~ ( - 1 ) ~  ' 
m~>2 m 

[ (D2~ '~ (P i+q i ) ( - l ) ' z~p i (1 -~ lP2 '~  ] ( A + B )  

• Z ; . . . .  - i S ~ - ~ - - - - i  ! , , + ~ , ~ [ 5 2 2  ( p ; + q 3 + O +  ] H k = 2 ( P ~ . q ~ )  
i=2 ...... (B9) 

If we write the last term on the r ight-hand side of (B9) in the following 
form: 

i m + m 1 I, l ~ p2,0 ] ql,O ~, ( _ 1 ) ~  1 oX2(p; qi30)qj f_l~Z2pi[ l_(  ~ ~(~ 

/>2 m ~ ~ . . . . . . . .  ~ W - - - -  i ~i-]" m ql/> 0,p, + q, >/1 [ E 2  (P i  + qi)  -t- q l + l ] I ~ k  = 2 (Pk"  qk" ) q l ! 
i = 2,...,m 

x (A + B )  (B10) 

we have 

( A + R )  ( - 1 )  ~ ' 
q ( A , B ) = ( e ~ O - 1 ) ' - - +  

09 m> 2 m 

[ O)~rf f(P;+qi)cLoql(-- l )~Pi ] 

ql ~ O, pi + qi ~ 1 
i ~ 2,...,m 

• ( A + B )  ( B l l )  
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Now, if we show that the second term in (Bl l )  is zero we obtain (B1). We 
can write this term in powers of o in the following form: 

m )  2 i'll n ~ r n  n ni>~ l 

(rnll I 7 m [ 1)~'7~ 
* (2-. (A + B) (B12) 

Pi + qi = ni 

which vanishes because 

Pi,qi 
p ~ + q i = n i )  1 

( -1)P '  ( l - l ) "  0 (B13) 
Pi! q;! hi! 

A P P E N D I X  C 

In this appendix we explain the numerical procedure followed to 
calculate the probabilities shown in Figs. 1-12. For the purpose of com- 
putation it is more suitable the use of recurrence solutions than the 
calculation of the analytic formulas (4.34), (4.55), (4.58). 

For a noisy e parameter (Figs. 2-4) the following recurrence has been 
employed: 

/ 5 (N)  = 
[flk~ + 7(1 + V,5)](N- 1) + c~V(1 + V ~ ) -  2~V2o5 2 P(N- ~) 

Nil(1 + Vc5 ) 

+ ( '~vV2C~ N>~2 (Cl)  

8V(1 + V~5) - ;tV2& z - 
P(1 ) = P(O) 

/~(1 + v~ )  

This recurrence can be obtained taking derivatives in (4.31) and sub- 
stituting c?NF(s)/&N= N!/5(N).  The initial value/5(0) is calculated by nor- 
malization. 

In a similar way we have computed the probability for the case noise 
in the parameter 7 (Figs. 10--12). From Eq. (4.75) we have obtained the 
following recurrence relation: 



External Poisson White Noise in Finite Systems 723 

[fi05(N - t )2 + #(N - 1 ) [ 1 + 05(N-  1 ) ] ] 

L +aVE1 + 05(N-- 1)] --2c,92(N - 1)2J P ( N -  1) 
t~(N) 

N # [ I  + 0 5 ( N -  1 ) ]  

+ C ~  N>~2 (C2) 
Nfi[1 + 0 5 ( N -  1)] 

c~V_ 
p(1 ) = 7 -  e(o) 

When the noise is in the parameter fl (Figs. 6-8) we have from (4.51) the 
recurrence relation: 

fi(N) = #[ I + 05(N-  1 )] + y05(N- 1 ) + c~ VCO - 2052(N- t )/5(N _ 1 ) 

N ( N -  1 )(fl - 205)05 

{ 7 ( N - 2 ) [ I  +CO(N-1) ]+c~V[1  + 0 5 ( N - t ) ] }  _P(N-2) ,  N~>2 
N( N -  1 )(fl - 205)05 

( c 3 )  

In this case there are two unspecified quantities, P(1) and P(0) and we 
have only one condition of normalization. The difference with the above 
cases lies in the fact that the noise in the absorption parameter fl produces 
destruction operators in the equivalent master equation. For the 
calculation of probabilities we use now a method based on a continued 
fraction expansion as follows. We introduce the neighboring ratio as (28) 

P(N) 
~N = -- ( C 4 )  

P(N- 1 ) 

Operating in (C3) we obtain the continued fraction relation: 

A(N) 
~ = (c5) 

B(N) -- ~ N + 1 
where 

y ( N +  1)(1 + ~SN) + c~V(1 +05N) 
A(N) = (C6) 

( N +  1) N ( f l -  2CO)CO 

B(N) = fl- (1 + CON) + ycoN + ~ VCO - 2CO:N 

N(fl - 2CO)05 
(c7) 

The quantities ~N are numerically calculated with the use of standard 
�9 " ^ ( 2 9 )  approxlmahon~. Now, the probabilities are given by 
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N 
P(N) =/5(0) I] ~ 

i~1 

where as in the other cases the zero probabil ity/5(0)  is obtained by nor- 
malization. 
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